NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

wild jack casino | dongphym | ketqua net 60 ngày | samsung note 10 sim slot | slot 9999 | casino clipart | soi cau vip xsmb | aco slot drain dwg | casino hồng vận | css slot machine animation | tần suất lô tô miền bắc 100 ngày | stt chất | tải teaching feeling | mannhantv | football slot game | trochoi net | tv hay org hoat hinh | intertops casino | 5 free slots | old slot machines for sale | soi kèo bóng đá | coi bói tình yêu | fortuna slot | dự đoán xổ số bình thuận | ketqua24h vn index | gunny mobi online | giấc mơ phát tài tập cuối | xổ số miền bắc minh ngọc | jackpot giant slot | casino nap tien bang the cao | thống kê giải đặc biệt theo năm tháng tuần | doraemon nobita và vương quốc robot | kubet -- ku casino | nieuw slot voordeur | quay thử phú yên | primal megaways slot | the witcher 3 skill slots | xổ số thịnh nam bạc liêu | clmm casino | how to open sim card slot on iphone | golden galaxy casino | western slots | express card slot |