NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

centurion slot game | w540 ram slots | live casino house review | casino bmt | đăng nhập tobet88 | poppyplaytimemobile club miễn phí | game one piece 2 | penthouses cuộc chiến thượng lưu 3 tập 13 | crown casino bavet | thiendiahoi | ban yourself from casino | adsbygoogle push error no slot size for availablewidth 0 | montezuma slot | bong88viet | keo bongda888-V5 6 1 | online casino blog | palace slots casino | game slot | european slot sites | happy luke casino | lucky time slots | đăng nhập jun88 jun88.casino | jinni lotto casino | ho tram casino jobs | xo so dong thap 19 2 | slot warframe | casino near traverse city | nvme vs m2 slot | slots plus casino no deposit bonus | free slot games with bonus rounds | bocfan | smb to pci e slots | play raging rhino slot | xem clip 8 phút diễn viên về nhà đi con | bigbom | slot bahis siteleri | xsqbinh | nhiệt huyết thần tượng phần 3 | sands casino | express card slot dell latitude | sparks slot review | ku casino fan | vera und john casino | bingo extra casino |