NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot machine probability | wc deur slot | bejeweled slot machine | chơi casino | huong vi tinh than tap 34 | mod skin lq | venus casino cambodia | wm casino | 88club casino | lịch cúp điện bình phước | 0169 đổi thành số mấy | win real money slots | california casinos list | social | cascading reels slots | slot antenna | b88 ag com | slot trực tuyến | các loại bài trong casino | nhạc karaoke hay | 1 slot là gì | playtech casino software | chat zalo me trên điện thoại | bejeweled 2 slots | tên liên quân kí tự đẹp | ace88 info | ku777 casino | online casino 120 free spins | malina casino bonus | titanbet casino | casino corona phú quốc | banthang vip | double bubble casino | best online casinos in ireland | casino trực tuyến ac | casino royal mandelieu | banner slot | kết quả xsmb net 30 ngày gần nhất | tinh dầu đuổi chuột | qq app | wapvip com | ww88 casino |