NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

dragon island slot review | w88 slot | lich ucl | mhw slots | ice breaker slot | v9betvn | bigclub | pikachu online game | giải đặc biệt cả năm | truyện tranh màu sex | chém hoa quả | casino de monte carlo monaco | casino cash out rules | truck simulator vietnam | ba giai tu xuat mp3 | sabong | mr green casino erfahrung | circus circus hotel casino reno nevada | slot 9999 | trang ve thon da mp3 | download king tips | nhận code gà hành miễn phí 2017 | bình luân xsmb | hiệp khách giang hồ tập cuối | online slots 5 pound deposit | 1 slot nghĩa là gì | star casino sydney | casino night outfit | slotted wooden fence posts | ket qua 3d | roulette casino | casino lily | blackjack fun casino | montecarlo casino | real slots australia | ẽxciter 135 | hoi an casino | casino nap tien bang the cao | thống ke loto | dubai palace casino | nuoi lo kep khung 2 ngay | charlie m casino | tải play together miễn phí | ipad 6th generation sim card slot |