NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

online casino verification | kqxs daklak | gold rush casino game | casino nightclub | european online slots | kqxsmb p1 | ket qua 1 | casino tilbud | casinos in south dakota | bonus casino sem deposito | royal casino restaurant | thunderkick slots | snow slot | dd xsmn vip | 888 live casino | jefe casino | stardust slot | naruto truyen ki | xoiac | hoiana casino | danh sách các casino ở việt nam | siti casino online | online casino mobile bonus | scandibet casino | tai ku casino | b68ng com | aristocrat slots | crowne international casino danang | slot stop | cách xóa trang trống trong word | casino slots | bet88 slot | yeu apk | sxmnt2 | lịch bán kết euro 2021 | free slot games with bonus rounds no download no registration | netent online casinos | giải vô địch quốc gia thổ nhĩ kỳ | stainless steel slotted spoon | nhacaiee88in | xổ số bạc liêu ngày 18 tháng 1 | pink casino no deposit | slot bonus | buzz bingo and the slots room barkingside | trang casino | vwin casino | xsmncnht | 2bong sbobet | top 10 casino |