NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

xổ số ngày 9 tháng 2 năm 2023 | big jackpot slots | kết qua net 60 ngày | the witcher 3 skill slots | slot mobil | thống kê giải đặc biệt theo tuần tháng năm | u23 dubai cup | playboy online slot | fantasino casino | casino io | jack and the beanstalk slot | d365 | vespa slot | casino hội an | slot machine java | slots top up by phone bill | casino vip program | free welcome bonus no deposit required casino uk | casino x bonus | bigkool online | lichthidau bongdahomnay | the nugget casino | đánh cắp giấc mơ tập 1 | goo88 | phim casino | first slot machine 1887 | đề về 02 hôm sau đánh con gì | kubet casino | casino đồ sơn đóng cửa | fifa mobile nexon hàn quốc | john wick 1 | cửa hàng royal casino | 2 số cuối giải đặc biệt miền bắc | xổ số ngày 25 tháng 04 | tải app CMD368 | truck simulator vietnam | game bai doi thuong lang vui choi | thống kê loto miền bắc | slot machine java | slot là j | ruby slots sign up | soi kèo 7m | free 50 slot mumble server | slot pocket | web slot | chip casino |