NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

igt slot games | tylenhacai | doraemon tap dai | casino leon | top 10 online casino slots | xs khanh hoa thu 4 | william hill slots | free fruit slots | kensington lock slot là gì | dimm slots là gì | postgres replication slots | online slots usa | trang ve thon da mp3 | cách đuổi chuột ra khỏi xe ô tô | online casino jobs from home | soi cầu 366com | bet88 slot | vinoasis casino | nextgen slots | xsmb?trackid=sp-006 | siêu bắn cá hũ vàng tài lộc | chip casino | voucher shopee 1 triệu | tro choi nau | soạn đánh nhau với cối xay gió | bet365 tieng viet | jackpot dreams casino | dnailis 2021 | box thao luan xsmn | new pay by mobile casino | box thao luan xsmn | game joker slot | viva bong88 | canada casino reviews | an lạc phùng khoang | luv slot | xvedeo | kame | casino bmt | pt slot | slots animal | dafabet casino | happy pig slots | xsmb hôm nay đánh con gì bà con ơi | tải trò chơi đua xe | bong hinh trong tim | casino prom theme | tropicana online casino |