NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

vikings go to hell slot | candy jackpot slot machine | online casino slots australia | casino online 188loto | soi cau mb 24 | mơ thấy chó con | ladies nite slot | lucky slot machine | your name zing tv | quy lộ tập 6 | xổ số đồng nai ngày 17 tháng 05 | saipan island casino | đá gà casino trực tiếp | tú lơ khơ tá lả phỏm zingplay | máy tính casino | dimm slots | trùm săn tiền thưởng | vtv6 trực tiếp bóng đá | casino in ho chi minh | thư viện hmu | high variance slots | casino deposit paysafecard | virgin slots mobile | game tặng code 10k | isa slot motherboard | web casino | chat zalo me trên điện thoại | casino tumblr | theo dõi nettruyen | fifa mobile hàn quốc | casino tumblr | crowne international casino danang | augsburg đấu với dortmund | play free slots | aladdin slot machine | golden cherry casino no deposit codes | chat se | casino realistic games | bán cá hổ bắc tphcm | chống chuột ô tô | doc truyen ngon tinh | đại chiến kame | an1 | bond 007 casino royale | free casino slots | dd xstn |