NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

vegas casino | golden temple slot | lienquan garena vn code 2021 | golden tripod casino | juegos de casino online con dinero real | prime slots mobile | open slot | cởi áo | sliding door slot | ebet casino | free online slots wheel of fortune | mơ rắn | kính lặn bắn cá | xstp thu 7 | nhận định as roma | bong88viet | tipico casino | live casino usa | jogar slots online | 7890 | social casino games market size | 888 slots | trochoinet | ket qua 1 | slot phones | cau mn | casino đồ sơn | hotels near parx casino bensalem | app casino | casino việt nam ở đâu | time slot booking | video poker vs slots | bongdalu truc tiep | magisk manager | the witcher 3 skill slots | bình luân xsmb | casino online uy tín | quá khứ của win | ladbrokes slots | casino and hotel | genting casino liverpool | stainless steel slotted spoon | sieu ca h5 | slot club casino | most secure online casino | stainless steel slotted turner | bet 168 169 | casino theme party |