NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

chat zalo me trên điện thoại | casino nam hội an tuyển dụng | chơi casino trực tuyến trên điện thoại | mobile zodiac casino | u turn slot | golden hoyeah slots | kinh nghiệm chơi slot | win888 casino | casinos online autorizados em portugal | free slots that pay real money | m88 cá cược thể thao casino số 1 châu á | bets com casino | gà đá chợ tốt cần thơ | t slot aluminum extrusion | jun88 casino | slot 777 | dự đoán win888 | casino in bangkok pattaya | casino slot oyna | 0169 đổi thành số mấy | kim sa casino | casino tilbud | mega casino | new mobile phone casinos | used slot machines for sale | cascades casino | xổ số ngày 9 tháng 2 năm 2023 | laptop sd card slot | playamo casino | phatloc | keonhacai net1 | quay man club | tair | jade magician slot | angel of the winds casino | royal vegas slots | king of macedonia slot | appointment slots | casino in bangkok pattaya | k league 2 | tải bắn cá h5 | witcher 3 slots slots slots | ku casino official | willy wonka slots | du d0an xsmn | soi cầu mn | ion casino | mơ thấy tiền đánh con gì | v slot | casino organization |