NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

kết quả xổ số max 3d | trang ve thon da mp3 | beach life slot | game nữ hoàng ấn độ | casino restaurant | tạo dàn đề 2d | lô nên tốp | casino lights png | xsgia | vietnam casino | free slot games with bonus rounds no download no registration | đá gà trực tiếp casino 999 | best casino hotel in hanoi | sẽ gầy | 8 slot toaster | mô tưa bơm nước | đăng ký 1 slot | swamp attack | casino table price | slot drain | y8 hai nguoi | ibongda nhan dinh | gio reset fo4 | giải đặc biệt theo năm | tiengruoi gapo | gala casino 10 pound free | grand victoria casino elgin il | willkommensbonus casino | trò chơi casino | agree gì | casino slot machines | soi cau mn | kết quả xổ số miền bắc 200 ngày trước | slot png | pháp vs kazakhstan | app đầu tư kiếm tiền asideway | stt chất | nhận định as roma | casino 2go | slot casino malaysia | casino online fund |