NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cách xóa trang trắng trong word | lời thì thầm của những bóng ma | giấc mơ phát tài tập cuối | xoso wap vn | titan casino bonus code | william hill casino club mobile | golden galaxy hotel & casino | bet888 casino | casino royale suit | video casino games slot machines | hotels near foxwoods casino | online casino games for money | evolution casino | game nữ hoàng ấn độ | lịch sử mở bát | ip xs max 128gb | casino de monte carlo monaco france | sbobet com | xem boi bai tay | isa slot motherboard | cuclacnet | xeng88 | game bài slot đổi thưởng | trollstore | 88vin link telesafe | chot lo | bet88 slot | migliori siti slot online | clara lee | open slot | bk8 casino | tin chuyen nhuong chelsea | xhamster mobile | soicauviet net | lich thi dau u23 chau a 2024 | rượu sim | india slot | ten zing me dep | super 7 casino | tai zindo | pikachu online game | co up sanh rong | bongdalu | maplestory v matrix slot enhancement | 777 slots casino | bong888 com | titanic slot machine | cách tải dream league soccer 2021 | feyenoord đấu với roma |