NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lớp học đề cao thực lực manga | live2 7msport | thrills casino review | bảng đặc biệt 500 ngày | star casino sydney | m88 cá cược thể thao casino số 1 châu á | what is dedicated slot | wintrillions casino review | me zalo chat | soi cầu 247 me miễn phí | tên pubg | slot online idn | deposit 3 casino | slots real money | trực tiếp bóng nữ | cách chơi bài casino | book of ra deluxe slot | tỉ số trực tuyến 7m cn | giaitriluke | casino online slot | thử thách nghiệt ngã phần 2 tập 1 | red hot devil slot | kinh nghiệm chơi slot | giải vô địch quốc gia thổ nhĩ kỳ | quay thử tìm cặp số may mắn | casino valkenburg | gold rush casino game | huong vi tinh than tap 34 | tải 888 casino | join casino | 888b casino | top 10 best online casinos | tiki paradise slot | smart card slot on dell laptop | lịch thi đấu play off lck | sbobet com | spintastic casino | hp z420 pcie slots | con trâu số mấy | tần suất | m88 sảnh casino | sxmn30ngay | 2fb live | bet888 slot | all casino |