NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

thông tin tuyển dụng casino hội an | chó sủa là chó không cắn | extra chilli slot demo play | nhà cái uy tín nhất việt nam | eagle pass casino hotel | thống kê giải đặc biệt theo năm tháng | kết quả bóng đá nữ olympic tokyo | high variance slots | casino in ho chi minh city | theo dõi nettruyen | w88 vin shop | online casino games real money | napa casino | canlı casino | link tải ku casino | hai số cuối của giải đặc biệt | judi casino slot | soi cau vip xsmb | cherry jackpot casino reviews | dark vortex slot | dd xsmn vip | casino pullman | starlight kiss slot | electronic slot machines for sale | cú đấm máu | casino jar | 1x slot casino | golden mane slot | rolet casino | speeder x8 | medusa ii slots | online casino slot games | casino seo agency | slot canyon trail | mơ thấy mèo mướp | 8 day casino | burning desire slot | slot vlt | dự đoán xổ số kiên giang | tỷ số trực tuyến 7m cn | bet365 casino review | online casino vietnam | mi 8 lite sim slot | slotted metal | xoilac tv 90phut | australian slots |