NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

nuoi lo khung net | yeu nham chi dau tap 17 | american casino city | bet69 bet169 online | slot machine jackpot | 855crown casino | vegas slots real money | 7 vien ngoc | irish slots online | golden grimoire slot | slot canyon | kinh nghiệm lô de | medusa ii slots | paradise found slot | crown casino danang | lịch thi đấu vl 2021 | việt nam 7m cn | pragmatic play slot | 99qh88 | casino near me with slots | xổ số đồng nai ngày 2 tháng 8 | slot machine taxes | casino locator map | xosothantai mobi | rapidi casino | steam tower slot review | choione | lịch thi đấu playoff lck | billionaire casino slots 777 | slot game slotgame.ai | seriöse online casinos | yeu nham chi dau tap 17 | casino slot | used slot machines for sale | kerching casino | casino png | ketqua100ngay | mgm casino washington dc | fafafa gold slots free coins | casino software provider | casino vietnam | lich thi dau futsal world cup 2021 | kensington lock slot là gì | bongda88 com | quay trực tiếp bóng đá hôm nay | trực tuyến casino | xổ số đồng nai ngày 2 tháng 8 |