NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

evolution gaming slots | vận mệnh kỳ diệu tập 6 | casino bonus angebote | casino game icon | xổ số ngày 27 tháng 12 | full slots | browser casino | xo so dong thap 19 2 | 855 crown | tan so loto | bang thong ke loto | casino leon | thống kê lo | jackpot giant slot | slot booking app | thiệp chúc mừng năm mới | casino deposit paysafecard | xổ số minh ngọc miền bắc | ten zing me dep | xe exciter 135 | online casino live games best uk | 888 ladies slots | g25 | cassava slot sites | u turn slot | kostenlose slots | stt chất | vanphongdientu vatm | royal gclub casino | golden galaxy hotel & casino | bet 168 169 | slotted angle furniture | palace slots casino | reiko kobayakawa | đăng nhập minecraft | cách tính tài xỉu bóng đá | flash slot | sx minhngoc net | vwin casino | bongdalu 38com | fortune house slot | tải vichat | snake eyes casino | zalo chat | sheik yer money slot |