NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

how far is chumash casino from santa barbara | slotting là gì | great wild elk slot | game bai slot | w99 | khu cau keo net | james bond casino royal | casino watch | game one piece 2 | free 50 slot mumble server | dual slot | gw99 slot | new mobile slot sites | vệ sinh buồng đốt | joker123 slot | online casino austria | vulkan casino | leovegas casino bonus | casino online uy tin | nouveau riche slots | casino work | rocky mountain slots | tên pubg | chơi casino trực tuyến trên điện thoại cvproducts | lịch u23 châu á 2024 | xoilac 90phut | what online slots pay real money | slots nghĩa là gì | west casino | minecraft 1 18 0 apk | live2 7msport | game tặng code 10k | kí tự đặc biệt trong liên quân | dragon island slot review | tram vun huong phai tap 40 | xxnxx xom | odawa casino | lịch đá bóng aff cup 2021 | casino ở campuchia | casino winner | casino sign up | dafabet | marina bay sands casino | express casino | mơ thấy mèo mướp |