NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino buffet prices | dac biet năm | xóa trang word | yui hatano | casino blu ray | casino filme | 32red slots | 888bet casino | 4399 nau an | nhận định as roma | thai casino online | win là gì | clover rollover slot | banner slot | tần suất loto | xsmb t5 ht | slotted metal angle | baocaonoibo com | y8 1 nguoi com | giải vô địch brazil | conan tập mới nhất | lời giải hay lớp 5 | tải zalo về điện thoại | malina casino bonus | star casino sydney | casino deutsch | zalo download | do son casino | dafu casino | hong kong casino | fresh casino review | party slots | thong ke 2 so cuoi giai db | eagle pass casino hotel | slot machine tricks | thống kê xổ số bắc ninh | tải minecraft 1 19 miễn phí | kqxs daklak | hôm nay đánh đề con gì | golden slots casino | mugen 200 slots | ssd wifi slot | indian casinos in oklahoma | checker bắc ninh | tin chuyen nhuong chelsea |