NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino with poker | kết quả xổ số max 3d | fruit spin slot | casino bonus deutschland | kí tự liên quân đẹp | slot canyon trail | bingo and slots uk | club slot | bar 7 casino | slot 999 online | spbo live score | cô vợ mẫu mực | giấc mơ phát tài tập cuối | casino montecarlo | v-league 2024 lịch thi đấu | big win casino | ignition casino promo codes | tên ký tự | hybrid slot | bongdatructuyen keonhacai | vwin com | mobile casinos for real money | slot sensor | dự đoán xsmb xo so me | james bond casino royal | casino fh | live casino online canada | my play tren zing me | sleutel kwijt deur op slot | chữ kiểu liên quân | rồng vàng slot | tiếng anh giao tiếp trong casino | mr green live casino | tải 888 casino | slots casino no deposit bonus | tycoon casino free vegas jackpot slots | web casino 777 | tai epic slot | v9betvn | nhà cái thưởng thành viên mới | mu alpha test | malina casino bonus | cho em 1 slot | download zalo |