NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

ainsworth slot machines | casino in goa | địa chỉ dự an casino nam hội an | auto click nhanh nhất | european online slots | betwin | macao dự đoán | trò chơi pokemon miễn phí | macao du doan | hotel and casino | qq288 mobile | casino vtcgame vn | làm thiệp chúc mừng năm mới | assassins creed odyssey second weapon slot | m88 m88zalo | vespa slot | v9betvn | toolgame | tạo dàn đề 2d | marco polo slot | kí tự tên liên quân | casino restaurant | casino royal | blue chip casino hotel and spa | casino hội an | angel of the winds casino | casino trực tuyến m88 | thùng đựng đồ đa năng gấp gọn | wild jack casino | tiếng anh giao tiếp trong casino | soi cầu xsvl tài lộc | boss slots online | java slot machine source code | online casino singapore | cau hinh iphone 11 | land slot | thai casino online | chống chuột cho xe ô tô | best casino hotel in hanoi | casino 88 | casino kubet | mơ thấy thắp hương | kêt qua xô sô mb | mu đang alpha test |