NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

tiengruoi gapo | doraemon nobita và vương quốc robot | 777 casino roulette | casino bonus calendar | 10bet online casino | JDB666 com | tần suất lôtô | casino hồ tràm | mobile casino | cash wheel slot machine | slot machine jackpot | casino in tokyo japan | game slot doi thuong uy tin | expansion slots | tạo tên pubg đẹp | ket qua bong da vong loai world cup 2018 | titanbet casino | online casino roulette 10 cent | lich thi dau bong da seagame 2017 | hong kong casino | xo so 123 mien bac | cairns casino | kinh nghiệm chơi slot | 2vn | around the world slot | dự đoán ma cao | golden goddess slots | express casino | máy đánh bạc slot machine | game 777 slot | y8 2 người | ma nữ đáng yêu tập cuối | intertops casino | titan casino bonus code | bói bài tây 52 la | sidewinder slot | lịch cúp điện bình phước | nieuwe casino online | clmm casino | shanghai beauty slot | antique slot machines for sale | best slot machines in las vegas | fret slotting jig | 888b casino | vua hai tac zing |