NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

thống kê giải đặc biệt theo tuần tháng năm | đá gà casino campuchia | dell latitude e7470 ssd slot | vespa slot | tha casino | casino jar | online casino zahlt nicht aus | maxims casino london | bong da chuyen nhuong | the westin las vegas hotel casino & spa | fifa mobile hàn quốc mới nhất | source code casino | online casino slots real money | pmc slot | game slot doi thuong uy tin | huge casino | energy casino 24 | kí tự đặc biệt trong liên quân | jugar casino online | jackpot dreams casino | sự kiện cf | 7m cn vn | lacxoi | casino machine games | nhận code gà hành miễn phí 2017 | code football master 2 | casino bắc ninh | đánh cắp giấc mơ | casino affiliate | du doan mb | chuyen nhuong chelsea | bingo extra casino | munchkins slot | kairat almaty vs | lịch thi đấu world cup 2024 | casino renovations | mơ người chết đánh con gì | kerching casino | con trâu số mấy | slot hu | win 88 casino | betway live casino | real cash online casino | lich ucl | slots heaven review | 888 casino mobile | trò chơi casino | bong88viet | slot vervangen voordeur | montecarlo casino |