NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

unity slot machine tutorial | nấu xôi đậu phộng | best tablet with sim card slot | ignition casino promo codes | titan casino bonus code | one piece zing me | fish casino | betvisa casino | trò chơi casino trực tuyến | soi cau mn hôm nay | thong ke loto | thái bình thiên quốc | minecraft 1 18 0 | casino winner kroon | casino malaysia | baocaonoibo com | white wing manteau slot | scudamores super stakes slot | judi casino slot | rtp slot machines | sands casino | best rated online casino | online slots echtgeld | dac biet năm | grand lake casino | kinh nghiệm lô de | top 10 online casino slots | slot slot | how to win on penny slots | lịch cúp điện bình phước | igram io | tasmania casino | casino del bel respiro | saipan island casino | online casino no deposit bonus keep what you win | ban acc fo3 | câu lạc bộ bóng đá western united | casino royale summary | casino online 188loto | slotted wooden fence posts | iphone 8 sim slot | xiaomi mi 8 lite sim card slot | happyluke casino | soxome | xem truc tiep king cup | nằm mơ thấy dây chuyền vàng đánh đề con gì | thong ke loto mien bac |