NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

akay hau | golden casino | casino table price | 7 chakras slot | bài casino | vanphongdientu vatm | casino engineering | migliori siti slot online | city casino online | halloween jack slot | kings romans casino | penny slot machines | jackpot strike casino | cách giải rubik tầng 3 | cubet | flash online casino | thiếu niên ca hành thuyết minh | online slots tips | arceus x | dự đoán xổ số bình dương | potawatomi bingo casino | loe ngoe | tần xuất | jun88 jun88.casino | what is dedicated slot | casino lua ban nhu the nao | slot la gì trong free fire | las vegas sun casino | slot in angular | karaoke hay | didonghan | casino online blog | akay hau | lịch thi đấu u23 châu a 2024 | lich thi dau vleague 2021 | soi cau 568 | lara croft slot | ku casino fan | royal casino online | trusted online casino sites | ma nữ đáng yêu tập cuối | same day withdrawal online casinos | sex tre em my | uk casino | cách xóa trang | casino winner kroon | go aircraft odd | extra wild slot | las vegas casino online | lich thi dau msi 2023 |