NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

3547700 | hoi an casino | casinos online autorizados em portugal | minecraft slot id | cách tải vương giả vinh diệu | casino barriere toulouse | raging rhino casino | sòng bài casino campuchia | 8868 | mơ thấy mèo mướp | 855 crown | slot 888 | online casinos test | khu cau keo net | slot minecraft | casino with poker tables near me | maplestory pocket slot | casino online fund | xổ số miền bắc minh ngọc | sg slots | slot canyon trail | dealer casino | royal casino restaurant | red baron slot machine | exciter 135 | trang web casino uy tín | starlight kiss slot | casino hotel for sale | kích thước iphone 11 | mơ thấy cứt | lô đề online | những bài hát karaoke | beste netent casino | casino kubet | chuyển file word sang excel | high variance slots | casino limousine | hitstars casino | đội hình real madrid 2024 | hyper casino willkommensbonus | best online crypto casino | tha ku casino | bet88 slot | xst6 | moby dick slot | online casino paysafecard |