NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

chăm sóc xe hơi | fan tan casino | tylenhacai | lịch đá bóng aff cup 2021 | aruba 2930m 48g 1 slot switch | dự đoán win888 | xóa trang word | casino stud poker | livescore kqbd | id slot punch | chơi đánh đàn | nye online casinoer | oude slot heemstede | 1gom com ty le keo malaysia | ios 15 6 beta 3 | nằm mơ thấy cứt | slot in angular | fafafa gold slots free coins | happyluke slot game căn phòng vui vẻ | casino oyunları bedava | tsogo sun casinos | conan tập mới nhất | eagle pass casino hotel | 3cang | slotted metal angle | casino game icon | dedicated slot | hack quay slot | casino war online | online casino games for money | truyện ngôn | 512 casino | soi cau vip 3mien | online casino guide | slot judi terpercaya | 888b today | cassava slot sites | doraemon nobita và cuộc chiến vũ trụ | sdxc card slot | ku11 today | tải app safe thần quay | xe bus 08 | 78win01 com | rocky mountain slots | top ten online casino | keobongdahomnay |