NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

bigvip slot | moby dick slot | abc88 slot | du doan xsbd | eye of horus online slot | tải trò chơi roblox | double bubble casino | bandar judi slot online | lịch thi đấu lck mùa xuân 2021 | free slots machines with bonus feature | ag live casino | casino online fund | casino tarjoukset | netent online casinos | bavet casino | tha casino | doraemon tập dài mới nhất | mobile slots using phone credit | best jili slot game | casino bern speisekarte | a slot machine | đánh bài casino | ruleta de casino como se juega | royal vegas slots | crown casino danang | lịch chung kết world cup | win real money slots | boom casino | slot pintu | game đăng ký nhận 100k | jade magician slot | 3cang | đá gà casino trực tiếp ngày hôm nay | king 86 | australia online casino | slot games that pay real cash | upu 2024 | 888b today | laptop security lock slot | line 98 mobile | tai app ku casino | ex là gì |