NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

samsung note 10 sim slot | bongdanet livescore | mobile slots no deposit | money slot machine | soi kèo malaysia vs | chuyen nhuong bong da anh | ho yeah slots | k league 2 | how far is chumash casino from santa barbara | khu cau keo net | online microgaming casino bonuses | slotted nut socket | jackpot slots | w88 vin shop | v-league 2024 lịch thi đấu | dreams casino mobile | online casino games | quay hu slot | mơ thấy người chết đánh con gì | xsmnchunhat | wild orient slot | passport slot availability | xổ số ngày 9 tháng 2 năm 2023 | dealer casino | en kazançlı slot oyunu | b68ng com | mega casino | free slot games canada | cau hinh iphone 11 | tin tuc chuyen nhuong bong da | du doan lodephomnay | casino cash out rules | ku casino pro | signal slot qt | xổ số đà lạt ngày 9 tháng 04 | kqxs daklak | online slot games singapore | casino fh | 101tv bóng đá | nạp mobile legends | winstar slot machines | diamond empire slot | grand villa casino vancouver | golden crown casino poipet | titanic slot machine | stainless steel slotted screws | fifa nhật | houseofjack com casino |