NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

green yellow casino | kí tự đặc biệt trong liên quân | rocket fellas inc slot | nvme vs m2 slot | casino with poker tables near me | casino | myb casino no deposit bonus | casino hải phòng | casino hạ long | jackpot party casino | thống kê giải đặc biệt cả năm | thống kê giải đặc biệt hai số cuối | pci sound card in pcie slot | 10bet online casino | cách xóa trang trống trong word | soi kèo malaysia vs | casino trực tuyến atut | chốt lô | casino ở philippin | palace slots casino | xuatnhapcanh hochiminh | wild scarabs slot | link slot online | slot spiele | thiendia vn | xsmn 21 11 2022 | salary blackjack dealer | choi game roblox | game8jp | cách xóa danh bạ trên lumia 630 | the royal casino | casino 888 | free mobile slots | ongame 222 | nettruyenplus | nằm mơ thấy người chết đánh số gì | witches wealth slot | trusted online casino sites | mod skin liên quân apk | cashanova slot | id slot punch | sxmn30ngay | code gunny mobi haiduong pro | pharmacie casino montpellier | night rush casino online | linktructiepbongda |