NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

firekeepers casino 400 | golden crown casino poipet | real cash online casino | foxin wins slot | đề về 24 | game slot đổi tiền mặt | slot studio | x16 lane graphics slot | casino live house | spintastic casino | double bubble slot | casino trực tuyến vodich88 | bet88 slot | live2 7msport | reel money slot | 100 ladies slots | doc bao24h hom nay | nya slots | nuoi lo khung net | mơ thấy người chết đánh con gì | zen casino | nhận quà free fire miễn phí 2021 | tai sun casino | casino equipment for sale | những bài hát karaoke hay cho nam | xsthantai | dedicated slot | lucky slots casino | bet888 slot | xstv hang tuan | casino galaxy | casinos mobile francais | ipad 6th generation sim card slot | penthouses cuộc chiến thượng lưu tập 7 | evowars io | casino trump | xem bài tây | doremon tap dai | xoilac tv 90phut | momo app | casino ở sài gòn | lịch thi đấu v league 2024 |