NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino town | y8 1 nguoi com | casino bonus deutschland | top slots | casino online vina | đặc biệt theo năm | tú lơ khơ tá lả phỏm zingplay | fruit farm slot | casino trump | pci card in pcie slot | josé dinis aveiro | msi gl62m 7rdx ssd slot | tải bắn cá hoàng kim apk | live casino online canada | free welcome bonus no deposit required casino uk | casino hcm | gday casino mobile | laptop888 | sweet alchemy slot game | 777win casino | paypal casino mobile | joker123 slot | thống kê giải đặc biệt theo năm tháng | mobile casino echtgeld | sandinh pro | ibongda pro | caro casino | slot machine taxes | Chơi game bài Tiến lên miền Nam miễn phí | bói ngày sinh | palace slots casino | cầm xe không chính chủ | ky nữ net | thong ke loto | keomacao | thong ke loto mien bac | gold club slot machines | cách nạp tiền ku casino | legal casino | lịch thi đấu play off lck | video poker vs slots | casino đánh giá | casino billboard | vg 88 casino | regular slotted container box |