NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

elvis the king slot | online casino not registered with gamstop | 777 slots casino | time slot | top online casino that accepts neosurf | ku casino app | casino software provider | dark vortex slot | kq100 | quay man club | casino in russellville arkansas | las vegas casino online | đánh bạc casino | cherry gold casino | xoso666 com xsmb 30 ngày | houseofjack com casino | slot machine occasion | great wild elk slot | dat cuoc | lacxoi | bang thong ke loto | xem bói ngày tháng năm sinh | thống kê tần suất lôtô miền bắc | vao w88 w88th2 | judi casino slot | mobile online casino south africa | truc tiep euro 2021 | caravelle hotel casino | xổ số ngày 27 tháng 6 | tro choi nau | game slot uy tin | vegas casino | xsmb 568 vn | cutrai | hôm nay đánh đề con gì | 7 vien ngoc | raging rhino casino | ket qua bong da vong loai world cup 2018 | vip slot | xóa trang trắng word |