NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cách bắt đề kép bằng | royal vegas slots | thống kê xổ số gia lai | truck simulator vietnam modpure | casino gangster | game đáu trường khắc nghiệt | nuoi lo khung 247 com | casino in victoria canada | hybrid slot | how far is chumash casino from santa barbara | hotel casino des palmiers hyeres | bongdanet livescore | igram io | đề về 68 hôm sau đánh con gì | slotted | huong vi tinh than tap 34 | sum sweet | gladiator slot | casino golden stone | tải fifa mobile | lich thi dau chung ket the gioi lmht 2016 | clip 8 phút vtv | casino gold rush | v slot wheels | country club casino | casino pullman | spbo live score | map sỏi | live casino usa | fruit slots online | 88club casino | lich thi dau u23 chau a 2024 | country club casino | mi 8 lite sim slot | thevang tv | great blue free slot game | munchkins slot | cách viết thư upu năm 2023 | du doan mb | indian casinos in oklahoma | tan suat lo to | xổ số bạc liêu ngày 6 tháng 9 |