NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

thomo casino | giochi online slot | slot machine formula | culi trong bóng đá là gì | click 150 thai | disco spins slot | chơi casino trực tuyến trên điện thoại cvproducts | tải evowars io | country club casino | eagle pass casino hotel | 7 vien ngoc | mơ thấy chó | dafabet | crown casino melbourne | angel of the winds casino | huyền hạo chiến ký | the palms casino resort | m88 vin link | m88 com live casino | thống kê giải đặc biệt hai số cuối | postgres replication slots | slot belvedere | casino de | casino fundraiser ideas | hai số cuối giải đặc biệt | trochoi net | slot machine gallina | starspins casino | cherry love slot machine | casino vip program | 666 casino | dimm slots | bonanza slot big win | druid spell slots | gunny viet | bet888 slot | jungle jackpots slot | lichthidau bongdahomnay | bingo and slots | wazdan slots | golden temple slot | hotline slot | casino máy tính | casino online dialogoupr | surface pro 7 sd card slot | cách tải minecraft 1 18 | canlı casino | salary blackjack dealer | 78win01 com |