NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

crown casino đà nẵng | bronze casino | free slot machine games | slot madness | games dua xe dia hinh | viettel telecom gần đây | load letter paper in manual feed slot | mơ thấy tiền đánh con gì | 3d slot machine | dead or alive slot | fruit mania slot | thống kê kqxsmb theo tổng | vnrom bypass | casino việt nam | rong vang slot | ph casino | legal casino | hotels near grand victoria casino | tai app ku casino | chém hoa quả | sxmnt2 | 88win casino | thiệp chúc mừng năm mới | kerching casino | casino potsdamer platz | xsmnchunhat | casino filme | michigan casinos map | casino galaxy | acc fifa giá rẻ | nye online casinoer | trực tiếp đá gà casino 67 | slot die head | online slots australia real money | maxims casino london | slot แจก เครดิต ฟรี ไม่ ต้อง ฝาก 2020 | casino slot wallets | slots animal | regular slotted container box | đánh bài casino campuchia | dang ki nick vua dot kich | chim bay vào nhà đánh con gì | turnkey online casino | chơi casino | kho báu huyền thoại ios | trò chơi stick war legacy |