NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

188bey | cho em 1 slot | casino philippines | magisk manager | let it ride casino game | lịch thi đấu bóng chuyền nữ hôm nay | bắn cá thần tài | gren | du doan trung thuong xsmb | maquinas de casino trucos | best live casino uk | 3 reel slots online | conan tập mới nhất | cô dâu gán nợ tập 1 | zindo vin apk | white knight slot | soi kèo anh vs ch séc | casino song | lịch thi đấu play off lck | trò chơi zombie | casino moc bai | nuôi dàn de 30 số khung 3 ngày | bingo live | kqxs30 | hai số cuối giải đặc biệt miền bắc | casino 888b | cô vợ mẫu mực tập 1 | đá gà trực tiếp casino 67 | thử thách nghiệt ngã phần 2 | hanoi casino list | evolution gaming slots | casino tumblr | hellboy slots free | kensington lock slot là gì | american casino city | việc làm 123 | quay slot | soi kèo iraq indonesia | free 50 slot mumble server | california casinos list | telesafe | xoilac1 | 7 viên ngọc rồng mới nhất | kí tự đặc biệt trong liên quân | bikini beach slot game |