NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

best tablet with sim card slot | slots lv | lớp học đề cao thực lực manga | casinos in south dakota | casino ho chi minh | caro casino | ion casino | rocket fellas inc slot | situs slot uang asli | soicau mn | đá gà casino 2017 | casino pier seaside heights | những bài hát karaoke hay cho nam | free slots 777 games | hôm nay đánh de con gì | nha cai88 net | xem bói ngày sinh | tan xuat lo to | winner casino app android | mô tưa bơm nước | gift shop slot | casino trực tuyến khuyến mãi | live casino usa | 1 slot là gì | situs slot uang asli | 32red casino review | soi cầu mn | ongame 222 | lịch chung kết world cup | t slot clamps | ketqua net 60 ngày | spintastic casino bonus | 777 com casino | xstd90 | live house casino | slot canyon trail | evolution gaming slots | slot vervangen voordeur | adventure palace slot | mơ thấy hổ | mơ gãy răng đánh con gì | bet slot | lotus casino | game casino trực tuyến | casino slots |