NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot 9999 | list of casinos in iowa | bet online slots | las vegas sun casino | online casino deutschland legal | kq bd 24 | soi cầu rong bạch kim | kim quy slot | hoá ra em rất yêu anh tập 20 | bongdatructuyen keonhacai | fantasino casino | stainless steel slotted screws | fabet live tv | let it ride casino game | soxome | game slot doi the cao | casino nha trang | blue chip casino hotel and spa | nằm mơ thấy dây chuyền vàng đánh đề con gì | freebet slot online | trò chơi casino | truc tiep oman vs turkmenistan | pullman reef hotel casino cairns | can you cash in casino chips anywhere | miền trung gồm tỉnh nào | casino ở sài gòn | bao khanh hoa | mega casino | ket qua 1 | penthouses cuộc chiến thượng lưu phần 2 tập 7 | play 88 fortunes slot | 888b today | royal casino restaurant | bonus code for slots lv | sky casino | express casino | bongdaso24h | mad mad monkey slot | sleutel kwijt deur op slot | online casino mobile bonus | karaoke vol | video slot games online | kieu nu viet net | aruba 2930m 48g 1 slot switch | the witcher 3 skill slots |