NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

tin chuyen nhuong chelsea | campuchia casino | fruit spin slot | xem truc tiep king cup | dragon casino game | pound slots | cashanova slot | casino app mit startguthaben | 777 casino | xo so 123 mien bac | lacxoi | casino realistic games | jammin jars slot free | an1 | clip casino campuchia | online casino sk | stainless steel slotted spoon | thánh bắn cá slot | những bài hát karaoke hay | soi cầu lô đề - cam kết 100 ăn chắc | đánh cắp giấc mơ | launceston casino | truck simulator vietnam modpure | apkpure download | agen slot online terpercaya | lịch thi đấu u23 châu a 2024 | bắn cá 888b casino | dow zalo | casino trực tuyến tặng tiền | mayfair casino london | xsthantai | những bài hát karaoke hay nhất | cách chơi casino luôn thắng | bavet casino | snake eyes casino | model casino | bdhn | lq mod skin | slotted metal | bet365 com casino | red baron slot machine | xem ngày sinh | bao khanh hoa | desert nights casino | casino jar | thống kê giải đặc biệt năm 2024 | acer predator helios 300 hdd slot |