NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

xổ số thịnh nam bạc liêu | bocfan | judi slot terpercaya | những bài hát karaoke hay cho nam | banca golden hoyeah slots slots | cửa hàng royal casino | ph casino | mơ thấy ma đánh con gì | mod_fcgid can t apply process slot for | slots lv | 2 so cuoi | online casino jobs from home | casino lucky | boi bai tay | pocket slot maplestory | desert nights casino | kqxs100 | banner slot | corona casino phú quốc | online slots for money | golden palace casino | slot canyon trail | hai số cuối của giải đặc biệt | khách sạn phú an | quay thử đồng tháp | 2bong sbobet | fifa mobile japan | naruto phần 2 | tải zalo về điện thoại | zone casino msn | casino bern speisekarte | thống kê giải đặc biệt năm 2024 | wink slots promo code | mad slots | golden galaxy casino | giải vô địch na uy | venetian casino las vegas | golden hoyeah slots hack | zombie xxx | fargo casino | trollstore | big slot wins | xsmnchu nhat | lịch đá bóng aff cup 2021 | lich aff 2023 | casino game icon | slot academy |