NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino nb events | mơ thấy rắn trắng | fast payout casino | slot pocket | bang dac biet nam | fafafa gold slots free coins | casino barriere toulouse | scarlet pearl casino | hai số cuối giải đặc biệt miền bắc | money slot machine | cleopatra casino | xo so truc tiep 3 mien minh ngoc | casino roleta | chumba casino app | bongdalu | expansion scroll of radiance slot mu | bongdatructuyen keonhacai | paypal slots | secret of the stones slot game | fun casino fun | casino bank | casino 1995 trailer | slot bahis siteleri | devils number slot | luckia casino | trangchu24h | clip 8 phút diễn viên về nhà đi con | game slot doi thuong moi nhat | casino caliente on line | jun88 casino | jinni lotto casino | play together chơi miễn phí | dự đoán xổ số bạc liêu | slot attendant | mơ thấy tiền đánh con gì | sòng bài casino campuchia | BK8 | 88vin link telesafe | 88club casino | vietlott 22 2 22 |