NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino online w88 | winbet casino az | crank handle slot re2 | casino chemin de fer | 3d slot machine | game bai doi thuong lang vui choi | bournemouth đấu với chelsea | taxi 3d | slots heaven review | slotted washer | thống kê lô tô miền bắc | biggest casino bonus | casino corona | flash online casino | secret of the stones slot game | boom casino | nằm mơ thấy rắn to | acer predator helios 300 hdd slot | casino hồ tràm có cho người việt vào không | casino tumblr | soi cau hcm | best online casinos for us players | mod skin liên quân apk | audi q8 giá lăn bánh | how many ram slots in my laptop | n3ds sd card slot | free slots | open slot | casino forum | dàn lô bất bại | best online casino in new zealand | java slot machine source code | hai số cuối đặc biệt | mega casino login | royal gclub casino | free fruit slots | rampart casino vegas | casino thomo | royal casino restaurant | tilebong88 |