NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

new pay by mobile casino | bet365 casino | bắn cá đổi thưởng - thẻ cào 2021 | xstp thứ 7 | giá xe taxi | trò chơi pokemon miễn phí | nằm mơ thấy rắn | 6 slots poe | thứ hạng của udinese | all irish casino | the witcher 3 skill slots | postgres replication slots | thống kê lo | v slot 2040 | tan suat lo to | slot vlt | go aircraft odd | kickapoo lucky eagle casino events | 777 com casino | tetri mania slot | slot terbesar | casino ho tram | mạt sắt là gì | express casino | casino x отзывы | gambling slots | kết quả xsmb net 30 ngày gần nhất | gaminator slot | xsmn 21 11 2022 | big slot wins | cabaret club casino | số vietlott mega | triple casino | zen casino | casino pier seaside heights | free cash slot games | slot attendant | bình luân xsmb | country club casino | thống kê xsmb năm 2020 | seriöse online casinos | taxi 7 chỗ |