NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

poppyplaytimemobile club miễn phí | dự đoán xổ số 24h | dientutuyetnga | crown casino bavet | casinos in asian countries | tai app ku casino | truc tiep oman vs turkmenistan | french roulette casino | how many ram slots do i have | casino live house | casino royale imdb | chữ kiểu liên quân | trochoinet | slot 918kiss | adventure palace slot | tỉ số và tỷ lệ 2in1 | rizk casino review | what is dedicated slot | taxi 7 chỗ | online slots australia real money | lite bao moi | lucky casino | theo dõi nettruyen | thương con cá rô đồng tập 1 | zone casino msn | lịch world cup 2024 | kí tự liên quân đẹp | fruits kingdom slot | anonymous casino | el cortez casino | m88 com live casino | tai88vin link | bonus wheel slots | casino winner kroon | cascades casino | tải app ku casino | casinos en ligne | cabaret club casino | tro choi babybus | vegas diamonds slot | đá gà casino trực tiếp | chuyen nhuong bong da anh | jogos de slots online | hack quay slot | m88 sảnh casino | psg đấu với strasbourg | gladiator slot review | 188net | types of casino games | tần số loto |