NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

renton casino | naruto truyen ky | 1 hiệp bóng chuyền bao nhiều phút | slot attendant job description for resume | slot hu | paradise casino las vegas | laptop lock slot | trusted casino online canada | casino lua ban nhu the nao | jinni lotto casino | seneca resort and casino niagara falls ny | msi z270 a pro m 2 slot | slot machine occasion | high 5 casino slots on facebook | sport288 | blackjack online casino live dealer | 888 casino login | dimm slots là gì | linktructiepbongda | mộc bài casino | những bài hát karaoke hay | chăm sóc xe hơi | wapvip com | online casino games | nha cai casino | custom casino chip | new york new york hotel & casino | best casino for slots in vegas | xe đi casino thomo | tải app shopee | thống kê giải đặc biệt theo tháng năm | xsthan tai mt | gamehayvl | ruby fortune casino nz | mơ thấy ma đánh con gì | sun pazuru tài xỉu ios | luckys casino | vegas diamonds slot | mgm casino washington dc | willkommensbonus casino | quay thử xsmn 168 | kết qua net 60 ngày | chống chuột cho xe ô tô |