NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

200 deposit bonus slots | chicago slot | download zalo | thơ về ông nội đã mất | best online casino slots | truc tiep euro 2021 | xe lead giá bao nhiêu | casino thien ha | mơ thấy chó đánh con gì | slot bonus | clip của diễn viên về nhà đi con | chơi pikachu online | casino campuchia 2017 | xmas slots | thong ke loto mb | bongda365 tv | chip casino | lich world cup 2021 | máy đánh bạc slot machine | bong888 com | free online video slots | cap slot | fun88 casino | fun88 nhanh | king 86 | triple casino | m88 cá cược thể thao casino số 1 châu á | nuoi lo kep khung 2 ngay | sidewinder slot | acc fifa giá rẻ | giải đặc biệt cả năm | reel money slot | flash slot | sell slot machine | xs mỹ hạnh | ức là bao nhiêu | holy moly casino slot |