NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

model casino | xsmb 568 vn | casino kubet | rumpel wildspins slot | lịch thi đấu playoff lck | hai số cuối giải đặc biệt miền bắc | fake slots | pocket slot maplestory | online casino no deposit bonus keep what you win | thống kê hai số cuối của giải đặc biệt | vwin casino | casino bonus gratis senza deposito | skagit valley casino | soicau3cang | game nữ hoàng ấn độ | crank and slotted link | online casino singapore | truyện ngôn | golden palace casino | big win casino | dunder casino | fortune slots | viec lam o casino campuchia | bally slot machines | situs slot online terbaik | kết quả xsmb 100 ngày | gambling slots | slot machine taxes | casino naga | check rank lol | slots real money | 6696 | laptop sd card slot | doraemon tập dài mới nhất | thiendia | american online casino | casino 888 | truyện ngôn tình việt nam | xổ số đà lạt ngày 22 tháng 1 | vipbet | w88 is | happyluke slot game căn phòng vui vẻ | vesper casino royale | trang chủ ku casino | lucky koi slot | ninja slot | hình ảnh casino |