NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino cups | expresscard slot egpu | casino queen | casino 999 | odawa casino | free deposit slots | winbet casino | tinder web | lq mod skin | game dá bóng y8 | casino pier seaside heights | casino royale suit | cách xóa trang word | big777 đẳng cấp game slots | kqsx30 | truyện ngon tinh | dao vang doi | abc88 slot | fruit mania slot | photobooth casino | code sieu anh hung hai duong pro | giải j-league 1 nhật bản | irish slots online | casinos in st louis area | dragon fortune slot machine | slot game online for mobile malaysia | chơi game 98 màn hình rộng | 2so cuối giải đặc biệt | planet 7 casino review 2019 | how many ram slots in my laptop | casino geant | casino caliente on line | ariana slot machine | soi cầu xsmt win2888 asia | fabet live | giải đặc biệt tuần tháng năm | vinoasis casino | cashanova slot | đề về 68 hôm sau đánh con gì | msi gl62m 7rdx ssd slot | crown casino chrey thum | taitrochoimienphi | indian casinos in california | 1 x pci e x16 slot |