NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lộc 79 win | app đầu tư kiếm tiền asideway | football champions cup slot | dubai palace casino | golden galaxy casino | free slot games with bonus rounds | game slot vtc | xoiac | cô vợ mẫu mực | casino software provider | steam poppy playtime - chapter 3 apk | 7890 | kết quả xsmb net 30 ngày gần nhất | photobooth casino | casino website | bắn cá slot | slot minecraft | bet888 casino | playamo casino | dong phym | tisotructuyen | fifa mobile hàn quốc mới nhất | xoso66 | kích thước iphone 11 | eye of horus slot game | hp 88 ink | roulette casino | quad cities casinos | 7 spins casino review | t slot aluminum extrusion | great blue free slot machine | casino nb events | great blue free slot game | soicau3cang | 888 live casino | online casino blog | casinos mobile francais | 90 phút | casino ho tram | tên ký tự | casino pour le fun | free slot games with bonus rounds | mơ thấy vàng | download zalo | 007 casino | casino venus | spin palace casino real money | betphoenix casino |