NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

big wheel slot | casino hoi an | mystic lake casino map | slot machine casino games | ức là bao nhiêu | casino mobile slots | royal casino | app mod skin liên quân | cởi quần áo | fruit shop slot machine | slotted post | casino heist | viết thư upu năm 2024 | casino trực tuyến tặng tiền | xổ số đồng nai ngày 20 tháng 04 | đăng ký làm đại lý ku casino | neue online casinos 2020 | clip 8 phút diễn viên về nhà đi con | bigkool online | luxor slots | siêu nhân thần kiếm game | 007 casino | dynamite digger slot game | vinagames | spintastic casino bonus | slots club casino | joker123 slot | thống kê xổ số gia lai | ladbrokes casino no deposit | slot 88 | isle of capri casino | extra wild slot | casino cups | 888bet casino | casino locator map | lich thi dau msi 2023 | chicago slot | lich thi dau bong da seagame 2017 | golden galaxy hotel & casino | slot terbesar | dimm slots | golden tiger casino review | clip của diễn viên về nhà đi con |